Tuyển tập 63 đề thi học kì 1 môn Toán lớp 6 Đề kiểm tra học kì 1 lớp 6 môn Toán

TOP 63 đề thi học kì 1 môn Toán 6 giúp các em học sinh lớp 6 tham khảo, nắm được cấu trúc đề thi theo sách Cánh diều, Chân trời sáng tạo và Kết nối tri thức với cuộc sống. Nhờ đó, sẽ nắm thật chắc kiến thức, ôn thi học kì 1 hiệu quả.

Với 63 đề thi học kì 1 môn Toán 6, còn giúp thầy cô tham khảo để giao đề ôn tập học kì 1 cho học sinh của mình. Chi tiết mời thầy cô và các em cùng theo dõi bài viết dưới đây của Download.vn:

Tuyển tập 63 đề thi học kì 1 môn Toán lớp 6

  • Đề thi học kì 1 môn Toán 6 sách Chân trời sáng tạo
  • Đề thi học kì 1 môn Toán 6 sách Kết nối tri thức với cuộc sống
  • Đề thi học kì 1 môn Toán 6 sách Cánh diều
  • 60 đề thi học kì 1 môn Toán lớp 6

Đề thi học kì 1 môn Toán 6 sách Chân trời sáng tạo

Đề thi học kì 1 môn Toán 6

PHÒNG GIÁO DỤC HUYỆN…..

TRƯỜNG TH&THCS……

ĐỀ KIỂM TRA HỌC KÌ I NĂM 2022 – 2023MÔN TOÁN 6Thời gian làm bài: 90 phút

PHẦN 1. TRẮC NGHIỆM

Chọn đáp án đúng.

Câu 1. 38 đọc là:

A. Tám mũ ba

B. Ba mũ tám

C. Tám nhân ba

D. Ba nhân tám

Câu 2: Số nguyên chỉ năm có sự kiện “Thế vận hội đầu tiên diễn ra năm 776 trước công nguyên” là số nào trong các số sau đây?

A. – 1776

B. 776

C. – 776

D. 1776

Câu 3. Hình nào dưới đây là hình tam giác đều?

Câu 4: Hình nào dưới đây có trục đối xứng?

PHẦN 2. TỰ LUẬN

Câu 5: Trong các số 1930, 1945, 1954, 1975. Những số nào chia hết cho 5? Vì sao?

Câu 6: Một chiếc tàu ngầm đang ở độ cao -47 m so với mực nước biển. Sau đó tàu ngầm nổi lên 18 m.

a) Viết phép tính biểu thị độ cao mới của tàu ngầm so với mực nước biển.

b) Tính độ cao mới của tàu ngầm so với mặt nước biển.

Câu 7: Bản tin dự báo thời tiết dưới đây cho biết nhiệt độ thấp nhất và nhiệt độ cao nhất ở Thủ đô Mát-xcơ-va của Liên bang Nga (tính theo độ C) trong các ngày từ 17/1/2021 đến 23/1/2021

a) Nêu nhiệt độ cao nhất, nhiệt độ thấp nhất ở Thủ đô Mát-xcơ-va của Liên bang Nga (tính theo độ C) trong ngày 22/1/2021

b) Chênh lệch giữa nhiệt độ cao nhất và nhiệt độ thấp nhất ở Thủ đô Mát-xcơ-va của Liên bang Nga trong ngày 22/1 2021 là bao nhiêu độ C ?

Câu 8:

a) Tìm bội chung nhỏ nhất của 18 và 27.

b) Thực hiện phép tính:

Câu 9: Dùng thước và compa vẽ hình thoi ABCD biết cạnh AB = 3cm, đường chéo AC = 5cm.

Đáp án đề thi học kì 1 môn Toán 6

Câu 1:

– Để trả lời được câu một học sinh phải đọc được biểu thức lũy thừa của một số tự nhiên.

– Câu 1 đánh giá năng lực giao tiếp toán học theo mức độ 1.

– Đáp án: B.

– Điểm số: 0,5.

Câu 2:

– Để trả lời được câu 2, học sinh phải biết sử dụng số nguyên âm để chỉ thời gian trước Công nguyên.

– Câu 2 đánh giá năng lực mô hình hóa toán học theo mức 1.

– Đáp án: C.

– Điểm số: 0,5.

Câu 3:

– Để trả lời được câu 3 học sinh phải nhận biết được tam giác đều.

– Câu 3 đánh giá năng lực tư duy và lập luận toán học theo mức 1.

– Đáp án D.

– Điểm số: 0,5.

Câu 4:

– Để trả lời được câu 4 học sinh phải nhận biết được hình phẳng có trục đối xứng.

– Câu 4 đánh giá năng lực tư duy và lập luận toán học theo mức 1.

– Đáp án: A.

– Điểm số 0,5.

Câu 5:

– Để trả lời được câu 5 học sinh phải biết dựa vào dấu hiệu chia hết cho 5.

– Câu 5 đánh giá năng lực tư duy và lập luận toán học theo mức 2.

– Giải: Trong các số 1930, 1945, 1954, 1975, những số chia hết cho 5 là: 1930, 1945, 1975, vì chúng có chữ số tận cùng là 0 ; 5

– Điểm số: 1,5

Câu 6:

a)

– Để làm được câu 6a, học sinh phải hiểu được vấn đề thực tiễn gắn với thực hiện các phép tính số nguyên.

– Câu 6a đánh giá năng lực mô hình hóa toán học theo mức 2.

– Giải: Phép toán liên quan đến độ cao mới của tàu ngầm dưới mực nước biển là: -47 + 18.

– Điểm số: 0,5

b)

– Để làm được câu 6b học sinh phải giải quyết được vấn đề thực tiễn gắn với thực hiện các phép tính số nguyên.

– Câu 6b đánh giá năng lực mô hình hóa toán học theo mức 3.

– Giải: Độ cao mới của tàu ngầm so với mực nước biển là: -47 + 18 = -29 (m).

– Điểm số: 0,5

Câu 7:

a)

– Để trả lời được câu 7a, học sinh phải hiểu được vấn đề thực tiễn gắn với so sánh hai số nguyên.

– Câu 7a đánh giá năng lực mô hình hóa toán học theo mức 2.

– Giải:

+ Nhiệt độ cao nhất ở Thủ đô Mát-xcơ-va của Liên bang Nga tính theo độ C trong ngày 22/1/2021 là: -1 0C.

+ Nhiệt độ thấp nhất ở Thủ đô Mát-xcơ-va của Liên bang Nga tính theo độ C trong ngày 22/1/2021 là: -9 0C.

– Điểm số: 1.

b)

– Để trả lời được câu 7b, học sinh phải giải quyết được vấn đề thực tiễn gắn với thực hiện các phép tính số nguyên.

– Câu 7b đánh giá năng lực mô hình hóa toán học theo mức 3.

– Giải:

Chênh lệch giữa nhiệt độ cao nhất và nhiệt độ thấp nhất ở Thủ đô Mát-xcơ-va của Liên bang Nga trong ngày 22/1/2021 là: -1 – (-9) = 8 0C.

– Điểm số: 0,5

Câu 8:

a)

– Để làm được câu 8a, học sinh phải xác định được bội chung nhỏ nhất của hai số tự nhiên.

– Câu 8a, đánh giá năng lực giải quyết vấn đề toán học theo mức 3.

– Giải:

Phân tích 18 và 27 ra thừa số nguyên tố:

18 = 2 . 3 . 3 = 2 . 32

27 = 3 . 3 . 3 = 33

BCNN(18, 27) = 2 . 32 = 2 . 27 = 54

– Điểm số: 1.

b)

– Để làm được câu 8b, học sinh phải thực hiện được phép cộng phân số bằng cách sử dụng bội chung nhỏ nhất.

– Câu 8b đánh giá năng lực giải quyết vấn đề toán học theo mức 3.

– Giải:

BCNN(18, 27) = 54

54 : 18 = 3

54 : 27 = 2

– Điểm số: 1.

Câu 9:

Câu 10:

– Để làm được câu 10 học sinh phải coi mỗi đoạn ống hút biểu diễn một cạnh của lục giác đều, mô tả được một số yếu tố cơ bản của lục giác đều, biết cách tạo lập lục giác đều.

– Câu 10 đánh giá năng lực mô hình hóa toán học, giải quyết vấn đề toán học mức 4.

– Giải:

a) Muỗi hút được cắt thành 3 đoạn bằng nhau để tạo nên ba cạnh của mỗi lục giác đều.

Vậy mỗi lục giác đều cần 2 ống hút.

Trên hình có tất cả 9 lục giác đều, do đó số hút mà bạn Hoa đã sử dụng là:

9 . 2 = 18 (ống hút).

b) Tổng chiều dài của tất cả các ống hút mà bạn Hoa đã dùng là:

18 . 198 = 3564 (mm)

– Điểm số: 1.

Ma trận đề thi học kì 1 môn Toán 6 sách Chân trời sáng tạo

Nhận biết

Thông hiểu

Vận dụng

vận dụng cao

Cộng

TN

TL

TN

TL

TN

TL

TN

TL

Chương 1. Số tự nhiên.

Số câu

1

1

2

4

Số điểm

0,5

1,5

2

4

Số câu/ Hình thức

1

5

8a, 8b

Thành tố năng lực.

GT

TD

GQVĐ

Chương 2. Số nguyên.

Số câu

1

2

2

5

Số điểm

0,5

1,5

1

3

Số câu/ Hình thức

2

6a, 7a

6b,7b

Thành tố năng lực.

MHH

MHH

MHH

Chương 3. Hình học trực quan.

Số câu

2

1

2

5

Số điểm

1

1

1

3

Số câu/ Hình thức

3,4

9

10a, 10b

Thành tố năng lực.

TD

CC

MHH, CC, GQVĐ

Tổng điểm

2

3

4

1

10

Đề thi học kì 1 môn Toán 6 sách Kết nối tri thức với cuộc sống

Đề thi học kì 1 môn Toán 6

I. PHẦN TRẮC NGHIỆM (3 điểm)

Câu 1. Gọi A là tập hợp các số tự nhiên nhỏ hơn 5. Cách viết đúng là:

A. A= {1; 2; 3; 4} B. A= {0; 1; 2; 3; 4} C. A= {1; 2; 3; 4; 5} D. A= {0; 1; 2; 3; 4; 5}

Câu 2. Kết quả của 53 là:

A.15. B. 25.C. 5. D. 125.

Câu 3. Không thực hiện phép tính, hãy cho biết trong các tổng sau, tổng chia hết cho 5 là:

A. 10 = 25 + 34 + 2000B. 5+ 10 + 70 + 1995C. 25 + 15 + 33 + 45D.12 + 25 + 2000 + 1997

Câu 4. Trong các số: 2; 3; 4; 5 số nào là hợp số?

A. 2B. 3 C. 4D. 5

Câu 5. Trong các phát biểu sau, phát biểu nào sai?

A. 9 ∈ NB. -6 ∈ NC. -3 ∈ ZD. 0 ∈ N

Câu 6. Hãy chỉ ra đáp án sai trong các đáp án sau. Số âm biểu thị:

A. Nhiệt độ dưới 00CB. Số tiền lỗC. Độ cao dưới mực nước biển D. Độ viễn thị

Câu 7. Trong các hình sau, hình nào có tất cả các góc không bằng nhau?

A. Hình tam giác đều. B. Hình vuông.C. Hình thang cân.D. Lục giác đều

Câu 8. Hình nào có hai đường chéo bằng nhau?

A. Hình vuông.B. Hình bình hành.C. Hình tam giác đều. D. Hình thoi

Câu 9. Hình tam giác đều có mấy trục đối xứng?

A.1. B. 2.C. 3.D. 4.

Câu 10. Hình vuông có mấy trục đối xứng?

A.1.B. 2. C. 3.D. 4.

Câu 11. Hình nào sau đây không có tâm đối xứng?

A.Hình tam giác đều.B. Hình chữ nhật.C. Hình bình hành. D. Hình vuông.

Câu 12. Trong các hình sau, hình nào có tâm đối xứng

II. PHẦN TỰ LUẬN (7 điểm)

Câu 13. (2,0 điểm): Thực hiện các phép tính sau:

Câu 14. (3,0 điểm)

1. Tìm số nguyên x, biết:

a) 68 – 2(x + 4) = -12

b) (2x – 3).7 = 35

2. Tìm số tự nhiên biết: (2x + 7) ⁝ (x 2)

Câu 15. (0,5 điểm): Hai lớp 6A và 6B nhận trồng một số cây như nhau. Mỗi học sinh lớp 6A phải trồng 6 cây, mỗi học sinh lớp 6B phải trồng 8 cây. Tính số cây mỗi lớp phải trồng, biết rằng số cây đó trong khoảng từ 170 đến 200.

Câu 16. (1,0 điểm): Trên một mảnh đất hình chữ nhật có chiều dài 12m, chiều rộng 10m, người ta chia khu để trồng hoa, trồng cỏ như hình bên. Hoa sẽ được trồng ở khu vực hình bình hành AMCN, cỏ sẽ được trồng ở phần đất còn lại. Tiền công để trả cho mỗi mét vuông trồng hoa là 50 000 nghìn đồng, trồng cỏ là 40 000 đồng. Tính số tiền công cần chi trả để trồng hoa và cỏ.

Câu 17. (0,5 điểm): Everest thuộc dãy Hy Mã Lạp Sơn (Ấn Độ) là ngọn núi cao nhất của thế giới, có độ cao 8848 mét. Rãnh Mariana ở Thái Bình Dương, nơi được coi là sâu nhất dưới biển, có độ sâu 11034m. Hãy tính sự chênh lệch ở hai địa điểm này là bao nhiêu mét (với qui ước mực nước biển ở vạch số 0).

Đáp án đề thi học kì 1 môn Toán 6

PHẦN 1: CÂU HỎI TRẮC NGHIỆM KHÁCH QUAN

Câu hỏi

1

2

3

4

5

6

7

8

9

10

11

12

Đáp án

B

D

B

C

B

D

C

A

C

D

A

C

PHẦN 2: CÂU HỎI TỰ LUẬN

Câu

Nội dung

Điểm

13

(2,0 điểm)

a) 82:4.3 + 2.32

= 64:4.3 + 2. 9

= 16.3 + 18

= 48 + 18

= 66

0,25

0,25

0,5

b) 645 – (-38) + (-45)= 645 + 38 – 45 = 645 – 45 + 38

= 600 + 38 = 638

0,5

0,5

14

(2,5 điểm)

a) 68 – 2(x + 4) = -12

2 (x + 4) = 80

x + 4 = 40

x = 36

Vậy: x = 36

0,5

0,5

b) (2x – 3).7 = 35

2x – 3 = 5

2x = 8

2x = 23

x = 3

0,5

0,5

c) (2x + 7) ⁝ (x 2)

Ta có 2(x – 2) ⁝ (x – 2) ⇒ (2x + 7) – 2(x – 2) ⁝ (x – 2)

Hay 11 ⁝ (x – 2) ⇒ x – 2 Ư(11) ⇒ x – 2 = 1 hoặc x – 2 = 11

hoặc x – 2 = -1, hoặc x – 2 = -11

Do đó x = 3; x = 13; x= 1; x= – 9

0,25

0,25

15

Gọi số cây mỗi lớp 6 phải trồng là x (cây) (x ∈ N*).

Mỗi học sinh lớp 6A phải trồng 6 cây, mỗi học sinh lớp 6B phải trồng 8 cây và số cây trong khoảng từ 170 đến 200 nên:

x ⁝ 6, x ⁝ 8 và 170 ≤ x ≤ 200; 6 = 2.3; 8 = 23

⇒ x ∈ BC (6,8) và 170 ≤ x ≤ 200

Ta có: ⇒ BCNN (6,8) = 23.3 = 24

⇒ BC(6,8) = B(24)= {0;24;48;72;96120;144168;192;216;…}

Do 170 ≤ x ≤ 200 suy ra x = 192. Vậy số cây mỗi lớp 6 phải trồng là 192 cây.

0,25

0,25

0,25

0,25

16

Dễ thấy trong hình bình hành AMCN chiều cao tương ứng của cạnh AN là MN và MN = AB = 10m

Do đó diện tích hình bình hành AMCN là:

6. 10 = 60 (m2)

Diện tích hình chữ nhật ABCD là:

10. 12 = 120 (m2)

Phần diện tích còn lại trồng cỏ là:

120 – 60 = 60 (m2)

Số tiền công cần để chi trả trồng hoa là:

50 000. 60 = 3 000 000 (đồng)

Số tiền công cần để chi trả trồng cỏ là:

40 000. 60 = 2 400 000 (đồng)

Số tiền công cần để chi trả trồng hoa và cỏ là:

3 000 000 + 2 400 000 = 5 400 000 (đồng)

Vậy số tiền công cần để chi trả trồng hoa và cỏ là 5 400 000 đồng.

0,25

0,25

0,25

0,25

17

So với mực nước biển thì độ cao của đỉnh Everest là 8848m

Độ sâu của rãnh Mariana là -11034m

Khoảng cách cần tìm là : 8848-(-11034)= 19882(m)

0,25

0,25

Bản đặc tả ma trận đề thi học kì 1 môn Toán 6

TT

Chủ đề

Mức độ đánh giá

Số câu hỏi theo mức độ nhận thức

Nhận biêt

Thông hiểu

Vận dụng

Vận dụng cao

SỐ VÀ ĐẠI SỐ

1

Số tự nhiên

Số tự nhiên và tập hợp các số tự nhiên. Thứ tự trong tập hợp các số tự nhiên

Nhận biết:

– Nhận biết được tập hợp các số tự nhiên.

1

(TN1)

Các phép tính với số tự nhiên. Phép tính luỹ thừa với số mũ tự nhiên

Nhận biết:

– Nhận biết được thứ tự thực hiện các phép tính.

1

(TN2)

Vận dụng:

– Thực hiện được các phép tính: cộng, trừ, nhân, chia trong tập hợp số tự nhiên.

– Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng trong tính toán.

– Thực hiện được phép tính luỹ thừa với số mũ tự nhiên; thực hiện được các phép nhân và phép chia hai luỹ thừa cùng cơ số với số mũ tự nhiên.

– Vận dụng được các tính chất của phép tính (kể cả phép tính luỹ thừa với số mũ tự nhiên) để tính nhẩm, tính nhanh một cách hợp lí.

– Giải quyết được những vấn đề thực tiễn (đơn giản, quen thuộc) gắn với thực hiện các phép tính (ví dụ: tính tiền mua sắm, tính lượng hàng mua được từ số tiền đã có, …).

TL

13a

1

TL 14b

Tính chia hết trong tập hợp các số tự nhiên. Số nguyên tố. Ước chung và bội chung

Nhận biết:

– Nhận biết được quan hệ chia hết, khái niệm ước và bội.

– Nhận biết được khái niệm số nguyên tố, hợp số.

2

(TN3, TN4)

Vận dụng:

– Thực hiện được việc phân tích một số tự nhiên lớn hơn 1 thành tích của các thừa số nguyên tố trong những trường hợp đơn giản.

– Xác định được ước chung, ước chung lớn nhất; xác định được bội chung, bội chung nhỏ nhất của hai hoặc ba số tự nhiên; thực hiện được phép cộng, phép trừ phân số bằng cách sử dụng ước chung lớn nhất, bội chung nhỏ nhất.

– Vận dụng được kiến thức số học vào giải quyết những vấn đề thực tiễn (đơn giản, quen thuộc) (ví dụ: tính toán tiền hay lượng hàng hoá khi mua sắm, xác định số đồ vật cần thiết để sắp xếp chúng theo những quy tắc cho trước,…).

Vận dụng cao:

– Vận dụng được kiến thức số học vào giải quyết những vấn đề thực tiễn (phức hợp, không quen thuộc).

1

TL 15

2

Số nguyên

Số nguyên âm và tập hợp các số nguyên. Thứ tự trong tập hợp các số nguyên

Nhận biết:

– Nhận biết được số nguyên âm, tập hợp các số nguyên.

– Nhận biết được ý nghĩa của số nguyên âm trong một số bài toán thực tiễn.

2

TN 5

TN6

Các phép tính với số nguyên. Tính chia hết trong tập hợp các số nguyên

Vận dụng:

– Thực hiện được các phép tính: cộng, trừ, nhân, chia (chia hết) trong tập hợp các số nguyên.

– Vận dụng được các tính chất giao hoán, kết hợp, phân phối của phép nhân đối với phép cộng, quy tắc dấu ngoặc trong tập hợp các số nguyên trong tính toán (tính viết và tính nhẩm, tính nhanh một cách hợp lí).

– Giải quyết được những vấn đề thực tiễn (đơn giản, quen thuộc) gắn với thực hiện các phép tính về số nguyên (ví dụ: tính lỗ lãi khi buôn bán,…).

1

(TL13b, 14a)

1

(TL 14.2)

Vận dụng cao:

– Giải quyết được những vấn đề thực tiễn (phức hợp, không quen thuộc) gắn với thực hiện các phép tính về số nguyên.

1

(TL17)

HÌNH HỌC VÀ ĐO LƯỜNG

3

Các hình phẳng trong thực tiễn

Tam giác đều, hình vuông, lục giác đều

Nhận biết:

– Nhận dạng được tam giác đều, hình vuông, hình chữ nhật, hình thoi, hình bình hành, hình thang cân. lục giác đều.

1

(TN7)

Hình chữ nhật, hình thoi, hình bình hành, hình thang cân

Thông hiểu:

– Mô tả được một số yếu tố cơ bản (cạnh, góc, đường chéo) của hình chữ nhật, hình thoi, hình bình hành, hình thang cân.

1

(TN 8)

Vận dụng

– Giải quyết được một số vấn đề thực tiễn gắn với việc tính chu vi và diện tích của các hình đặc biệt nói trên.

1

TL 16

4

Tính đối xứng của hình phẳng trong thế giới tự nhiên

Hình có trục đối xứng

Nhận biết:

– Nhận biết được trục đối xứng của một hình phẳng.

– Nhận biết được những hình phẳng trong tự nhiên có trục đối xứng (khi quan sát trên hình ảnh 2 chiều).

2

(TN9,TN10)

Hình có tâm đối xứng

Nhận biết:

– Nhận biết được tâm đối xứng của một hình phẳng.

– Nhận biết được những hình phẳng trong thế giới tự nhiên có tâm đối xứng (khi quan sát trên hình ảnh 2 chiều).

1

(TN11)

Vai trò của đối xứng trong thế giới tự nhiên

Nhận biết:

– Nhận biết được tính đối xứng trong Toán học, tự nhiên, nghệ thuật, kiến trúc, công nghệ chế tạo,…

– Nhận biết được vẻ đẹp của thế giới tự nhiên biểu hiện qua tính đối xứng (ví dụ: nhận biết vẻ đẹp của một số loài thực vật, động vật trong tự nhiên có tâm đối xứng hoặc có trục đối xứng).

1

(TN12)

Ma trận đề thi học kì 1 môn Toán 6

TT

Chương/

Chủ đề

(2)

Nội dung/đơn vị kiến thức

(3)

Mức độ đánh giá (4-11)

Tổng

Nhận biết

Thông hiểu

Vận dụng

Vận dụng cao

Tỉ lệ

Tổng điểm

TNKQ

TL

TNKQ

TL

TNKQ

TL

TNKQ

TL

TNKQ

TL

1

Số tự nhiên

Số tự nhiên và tập hợp các số tự nhiên. Thứ tự trong tập hợp các số tự nhiên

1

(0,25đ)

(TN1)

2,5%

0,25

Các phép tính với số tự nhiên. Phép tính luỹ thừa với số mũ tự nhiên

1

(0,25đ)

(TN2)

1

(1,0đ)

TL13a

1

(1,0đ)

TL 14b

2,5%

20%

2,25

Tính chia hết trong tập hợp các số tự nhiên. Số nguyên tốƯớc chung và bội chung

2

(0,5đ)

(TN3, TN4)

1

(0,5đ)

TL 15

5%

5%

1,0

2

Số nguyên

Số nguyên âm và tập hợp các số nguyên. Thứ tự trong tập hợp các số nguyên

1

(0,25đ)

(TN5)

2,5%

0,25

Các phép tính với số nguyên. Tính chia hết trong tập hợp các số nguyên

1

(0,25đ)

(TN6)

2

(2,0đ)

(TL13b,

TL14.1a)

1

(1,0đ)

(TN14.2)

1

(0,5đ)

TL 17

2,5%

35%

3,75

3

Các hình phẳng trong thực tiễn

Tam giác đều, hình vuông, lục giác đều

1

(0,25đ)

(TN7)

2,5%

0,25

Hình chữ nhật, hình thoi, hình bình hành, hình thang cân

1

(0,25đ)

(TN8)

1

(1,0đ)

TL16

2,5%

10%

1,25

4

Tính đối xứng của hình phẳng trong thế giới tự nhiên

Hình có trục đối xứng

2

(0,5đ)

(TN9, TN10)

5%

0,5

Hình có tâm đối xứng

1

(0,25đ)

(TN11)

2,5%

0,25

Vai trò của đối xứng trong thế giới tự nhiên

1

(0,25đ)

(TN12)

2,5%

0,25

Số câu

12

3

3

2

20

Số điểm

3,0

3,0

3,0

1,0

10,0

Tỉ lệ

30%

30%

30%

10%

100%

Đề thi học kì 1 môn Toán 6 sách Cánh diều

I. TRẮC NGHIỆM: (3,0 điểm)

Câu 1: (2,0 điểm)

Hãy viết chữ cái đứng trước phương án trả lời đúng ra tờ giấy kiểm tra.

1. Tập hợp B = {3, 4, 5, 6} số phần tử của tập hợp là:

A. 5;

B. 6;

C. 4;

D. 8.

2. Kết quả của phép tính 58. 52 là:

A. 58;

B. 510;

C. 56;

D. 516.

3. Cách viết nào sau đây được gọi là phân tích số 80 ra thừa số nguyên tố

A. 80 = 42.5;

B. 80 = 5.16;

C. 80 = 24.5;

D. 80 = 2.40.

4. Cho 3 điểm A,B,C thẳng hàng biết AB = 4cm, AC = 3cm, BC = 7cm, trong 3 điểm A, B, C điểm nào nằm giữa 2 điểm còn lại?

A. Điểm A;

B. Điểm B;

C. Điểm C;

D. Không có điểm nào.

Câu 2: (1,0 điểm)

Cho các thông tin: ( 58); 18; 3. Hãy chọn thông tin phù hợp rồi điền vào từng chỗ (…) trong các câu sau rồi ghi kết quả lựa chọn đó vào giấy kiểm tra.

1. Cho đoạn thẳng MN = 8 cm. Điểm K nằm giữa MN, biết KM = 5 cm thì đoạn thẳng KN =…..cm.

2. Kết quả của phép tính: (- 20 ) + 38 = …….

II. TỰ LUẬN: (7,0 điểm)

Câu 1: (1,0 điểm)

Cho các số: 576; 756; 675; 765. Hãy viết các số trong bốn số trên:

a) Chia hết cho 2

b) Chia hết cho cả 3 và 5

Câu 2:(1,0 điểm)

Thực hiện phép tính

a) 18 : 32+ 5.23

b) 25.26 + 74.25

Câu 3: (1,0 điểm)

Tìm x, biết

a) x + 72 = 36

b) |x+2| – 4 = 6

Câu 4: (2,0 điểm) Một số sách nếu xếp thành từng bó 12 quyển, 15 quyển hoặc 18 quyển đều vừa đủ bó. Tính số sách đó biết số sách trong khoảng từ 400 đến 600 (quyển).

60 đề thi học kì 1 môn Toán lớp 6