Mục lục
Tìm điều kiện xác định của biểu thức chứa căn thức cực hay
Phương pháp giải
+ Hàm số √A xác định ⇔ A ≥ 0.
+ Hàm phân thức xác định ⇔ mẫu thức khác 0.
Ví dụ minh họa
Ví dụ 1: Tìm điều kiện của x để các biểu thức sau có nghĩa:
Hướng dẫn giải:
a) xác định ⇔ -7x ≥ 0 ⇔ x ≤ 0.
b) xác định ⇔ 2x + 6 ≥ 0 ⇔ 2x ≥ -6 ⇔ x ≥ -3.
Ví dụ 2: Tìm điều kiện xác định của các biểu thức sau:
Hướng dẫn giải:
a) xác định
⇔ (x + 2)(x – 3) ≥ 0
Vậy điều kiện xác định của biểu thức là x ≥ 3 hoặc x ≤ -2.
b) xác định
⇔ x4 – 16 ≥ 0
⇔ (x2 – 4)(x2 + 4) ≥ 0
⇔ (x – 2)(x + 2)(x2 + 4) ≥ 0
⇔ (x – 2)(x + 2) ≥ 0 (vì x2 + 4 > 0).
Vậy điều kiện xác định của biểu thức là x ≥ 2 hoăc x ≤ -2 .
c) xác định
⇔ x + 5 ≠ 0
⇔ x ≠ -5.
Vậy điều kiện xác định của biểu thức là x ≠ 5.
Ví dụ 3: Tìm điều kiện xác định của biểu thức
Hướng dẫn giải:
Biểu thức M xác định khi
Từ (*) và (**) suy ra không tồn tại x thỏa mãn.
Vậy không có giá trị nào của x làm cho hàm số xác định.
Ví dụ 4: Tìm điều kiện xác định của biểu thức:
Hướng dẫn giải:
Biểu thức P xác định
Giải (*) : (3 – a)(a + 1) ≥ 0
⇔ -1 ≤ a ≤ 3
Kết hợp với điều kiện a ≥ 0 và a 4 ta suy ra 0 ≤ a ≤ 3.
Vậy với 0 ≤ a ≤ 3 thì biểu thức P xác định
Bài tập trắc nghiệm tự luyện
Bài 1: Biểu thức xác định khi :
A. x ≤ 1 B. x ≥ 1. C. x > 1 D. x < 1.
Bài 2: xác định khi:
A. x ≥ 1 B. x ≤ 1 C. x = 1 D. x ∈ ∅.
Bài 3: xác định khi :
A. x ≥ 3 và x ≠ -1 B. x ≤ 0 và x ≠ 1
C. x ≥ 0 và x ≠ 1 D. x ≤ 0 và x ≠ -1
Bài 4: Với giá trị nào của x thì biểu thức xác định
A. x ≠ 2. B. x < 2
C. x > 2 D. x ≥ 2.
Bài 5: Biểu thức xác định khi:
A. x ≥ -4. B. x ≥ 0 và x ≠ 4.
C. x ≥ 0 D. x = 4.
Bài 6: Với giá trị nào của x thì các biểu thức sau có nghĩa?
Hướng dẫn giải:
a) xác định xác định ⇔ -x ≥ 0 ⇔ x ≤ 0
b) xác định xác định ⇔ 2x + 3 ≥ 0 ⇔ 2x ≥ -3 ⇔ x ≥ -3/2
c) xác định xác định ⇔ 5 – 2x ≥ 0 ⇔ 2x ≤ 5 ⇔ x ≤ 5/2 .
d) xác định xác định ⇔ x – 1 ≠ 0 ⇔ x ≠ 1.
Bài 7: Tìm điều kiện xác định của các biểu thức sau:
Hướng dẫn giải:
a) xác định ⇔ (2x + 1)(x – 2) ≥ 0
Vậy biểu thức xác định với mọi giá trị x ≥ 2 hoặc x ≤ -1/2 .
b) xác định ⇔ (x + 3)(3 – x) ≥ 0
Vậy biểu thức xác định với mọi giá trị x thỏa mãn
c) xác định ⇔ |x + 2| ≥ 0 (thỏa mãn với mọi x)
Vậy biểu thức xác định với mọi giá trị của x.
d) xác định ⇔ (x – 1)(x – 2)(x – 3) ≥ 0.
Ta có bảng xét dấu:
Từ bảng xét dấu nhận thấy (x – 1)(x – 2)(x – 3) ≥ 0 nếu 1 ≤ x ≤ 2 hoặc x ≥ 3.
Bài 8: Khi nào các biểu thức sau tồn tại?
Hướng dẫn giải:
a) xác định ⇔ (a – 2)2 ≥ 0 (đúng với mọi a)
Vậy biểu thức xác định với mọi giá trị của a.
b) xác định với mọi a.
Vậy biểu thức xác định với mọi giá trị của a.
c) xác định ⇔ (a – 3)(a + 3) ≥ 0
Vậy biểu thức xác định với các giá trị a ≥ 3 hoặc a ≤ -3.
d)Ta có: a2 + 4 > 0 với mọi a nên biểu thức luôn xác định với mọi a.
Bài 9: Mỗi biểu thức sau xác định khi nào?
Hướng dẫn giải:
a) xác định
⇔ x – 2 > 0 ⇔ x > 2.
b) xác định
⇔ x2 – 3x + 2 > 0
⇔ (x – 2)(x – 1) > 0
Vậy biểu thức xác định khi x > 2 hoặc x < 1.
c) xác định
Giải (*):
Giải (**):
Kết hợp (*) và (**) ta được
Bài 10: Tìm điều kiện xác định của biểu thức :
Hướng dẫn giải:
Biểu thức xác định
Vậy điều kiện xác định của biểu thức P là x ≥ 0 và x .
Xem thêm các dạng bài tập Toán lớp 9 có đáp án và lời giải chi tiết khác:
Mục lục các Chuyên đề Toán lớp 9:
- Chuyên đề Đại Số 9
- Chuyên đề: Căn bậc hai
- Chuyên đề: Hàm số bậc nhất
- Chuyên đề: Hệ hai phương trình bậc nhất hai ẩn
- Chuyên đề: Phương trình bậc hai một ẩn số
- Chuyên đề Hình Học 9
- Chuyên đề: Hệ thức lượng trong tam giác vuông
- Chuyên đề: Đường tròn
- Chuyên đề: Góc với đường tròn
- Chuyên đề: Hình Trụ – Hình Nón – Hình Cầu
Săn SALE shopee tháng 7:
- Đồ dùng học tập giá rẻ
- Sữa dưỡng thể Vaseline chỉ hơn 40k/chai
- Tsubaki 199k/3 chai
- L’Oreal mua 1 tặng 3
- Hơn 20.000 câu trắc nghiệm Toán,Văn, Anh lớp 9 có đáp án
Tôi là Minh Khánh Chuyên Viên Tư Vấn Tín Dụng Tại dichvuthetindung.vn. Với vai trò là một chuyên gia về lĩnh vực thẻ tín dụng và trong những chia sẻ của tôi qua các bài Blog. Hy vọng sẽ đem lại những kiến thức tốt nhất cho các bạn. Nếu có thắc mắc hay những câu hỏi, các bạn đừng ngần ngại comment hoặc gọi trực tiếp cho tôi tại đây nhé!